Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons

نویسندگان

  • Emma Larsson
  • Jens F. Sundström
  • Folke Sitbon
  • Sara von Arnold
چکیده

BACKGROUND AND AIMS During embryo development in most gymnosperms, the establishment of the shoot apical meristem (SAM) occurs concomitantly with the formation of a crown of cotyledons surrounding the SAM. It has previously been shown that the differentiation of cotyledons in somatic embryos of Picea abies is dependent on polar auxin transport (PAT). In the angiosperm model plant, Arabidopsis thaliana, the establishment of cotyledonary boundaries and the embryonal SAM is dependent on PAT and the expression of the CUP-SHAPED COTYLEDON (CUC) genes, which belong to the large NAC gene family. The aim of this study was to characterize CUC-like genes in a gymnosperm, and to elucidate their expression during SAM and cotyledon differentiation, and in response to PAT. METHODS Sixteen Picea glauca NAC sequences were identified in GenBank and deployed to different clades within the NAC gene family using maximum parsimony analysis and Bayesian inference. Motifs conserved between angiosperms and gymnosperms were analysed using the motif discovery tool MEME. Expression profiles during embryo development were produced using quantitative real-time PCR. Protein conservation was analysed by introducing a P. abies CUC orthologue into the A. thaliana cuc1cuc2 double mutant. KEY RESULTS Two full-length CUC-like cDNAs denoted PaNAC01 and PaNAC02 were cloned from P. abies. PaNAC01, but not PaNAC02, harbours previously characterized functional motifs in CUC1 and CUC2. The expression profile of PaNAC01 showed that the gene is PAT regulated and associated with SAM differentiation and cotyledon formation. Furthermore, PaNAC01 could functionally substitute for CUC2 in the A. thaliana cuc1cuc2 double mutant. CONCLUSIONS The results show that CUC-like genes with distinct signature motifs existed before the separation of angiosperms and gymnosperms approx. 300 million years ago, and suggest a conserved function between PaNAC01 and CUC1/CUC2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Regulation of Embryo Development in Norway Spruce Polar Auxin Transport and Transcription Factors

Early events in embryo development are critical for the plant body formation. During this phase the apical-basal axis, the radial symmetry, and the primary meristems are specified. The shoot apical meristem (SAM) and the root apical meristem (RAM) will subsequently give rise to all above-ground and below-ground tissues. Despite the environmental and economical importance of conifers, the regula...

متن کامل

NAC regulation of embryo development in conifers

Background In most gymnosperms the cotyledons develop as a crown surrounding the incipient shoot apical meristem (SAM), which maintains the radial symmetry of the plant throughout embryogenesis. This is in contrast to the Arabidopsis embryo in which a symmetry-breaking event (from radial to bilateral symmetry) is associated with the emergence of the SAM and the two cotyledons [1]. We have previ...

متن کامل

The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.

Auxin and polar auxin transport have been implicated in controlling embryo patterning and development in angiosperms but less is known from the gymnosperms. The aims of this study were to determine at what stages of conifer embryo development auxin and polar auxin transport are the most important for normal development and to analyze the changes in embryos after treatment with the polar auxin i...

متن کامل

Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies...

متن کامل

The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation.

In higher plants, molecular mechanisms regulating shoot apical meristem (SAM) formation and organ separation are largely unknown. The CUC1 (CUP-SHAPED COTYLEDON1) and CUC2 are functionally redundant genes that are involved in these processes. We cloned the CUC1 gene by a map-based approach, and found that it encodes a NAC-domain protein highly homologous to CUC2. CUC1 mRNA was detected in the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2012